NNERO
Tutorial
Installation guide
Simple case
Run simple MCMC on astrophysical parameters
Use analysis / plotting tools in NNERO
Modules
nnero
NNERO
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
A
add_title() (nnero.analysis.AxesGrid method)
AxesGrid (class in nnero.analysis)
B
bestfit (nnero.analysis.ProcessedData attribute)
C
centers (nnero.analysis.ProcessedData attribute)
check_ik_R() (in module nnero.cosmology)
check_values() (in module nnero.predictor)
Classifier (class in nnero.classifier)
compatible_with() (nnero.analysis.GaussianInfo method)
compute_parameter() (in module nnero.analysis)
compute_quantiles() (in module nnero.analysis)
compute_stats() (nnero.analysis.MPChain method)
compute_tau() (in module nnero.analysis)
convergence() (nnero.analysis.EMCEESamples method)
(nnero.analysis.MPSamples method)
convert_array() (in module nnero.cosmology)
cov (nnero.analysis.GaussianInfo attribute)
covmat() (nnero.analysis.MPSamples method)
D
DataPartition (class in nnero.data)
DataSet (class in nnero.data)
dmhalo_dmuv() (in module nnero.astrophysics)
dn_dm() (in module nnero.cosmology)
dsigma_m_dm() (in module nnero.cosmology)
dsigma_r_dr() (in module nnero.cosmology)
E
edges (nnero.analysis.ProcessedData attribute)
EMCEESamples (class in nnero.analysis)
F
f_duty() (in module nnero.astrophysics)
flat() (nnero.analysis.EMCEESamples method)
(nnero.analysis.GaussianSamples method)
(nnero.analysis.MPSamples method)
(nnero.analysis.Samples method)
forward() (nnero.classifier.Classifier method)
(nnero.regressor.Regressor method)
G
GaussianInfo (class in nnero.analysis)
GaussianSamples (class in nnero.analysis)
generate_contours() (in module nnero.analysis)
get() (nnero.analysis.AxesGrid method)
get_k_max() (nnero.mcmc.UVLFLikelihood method)
get_x() (nnero.mcmc.Likelihood method)
get_x_dict() (nnero.mcmc.Likelihood method)
get_x_dicts() (nnero.mcmc.Likelihood method)
get_Xe_stats() (in module nnero.analysis)
get_Xe_tanh_stats() (in module nnero.analysis)
growth_function() (in module nnero.cosmology)
H
h_factor_no_rad() (in module nnero.cosmology)
h_factor_numpy() (in module nnero.cosmology)
hists_1D (nnero.analysis.ProcessedData attribute)
hists_2D (nnero.analysis.ProcessedData attribute)
I
index_1D() (nnero.analysis.AxesGrid method)
index_from_name() (nnero.analysis.AxesGrid method)
indices_2D() (nnero.analysis.AxesGrid method)
info() (nnero.network.NeuralNetwork method)
init_principal_components() (nnero.data.DataSet method)
initialise_walkers() (in module nnero.mcmc)
input_values() (in module nnero.predictor)
L
latex_labels() (in module nnero.data)
levels (nnero.analysis.ProcessedData attribute)
Likelihood (class in nnero.mcmc)
load() (nnero.analysis.MPChain method)
(nnero.classifier.Classifier class method)
(nnero.data.DataPartition class method)
(nnero.data.MetaData class method)
(nnero.regressor.Regressor class method)
load_chains() (nnero.analysis.EMCEESamples method)
(nnero.analysis.MPSamples method)
load_data() (nnero.analysis.GaussianSamples method)
load_paramnames() (nnero.analysis.MPSamples method)
load_scaling_factor() (nnero.analysis.MPSamples method)
load_weights_and_extras() (nnero.network.NeuralNetwork method)
log_likelihood() (in module nnero.mcmc)
log_prior() (in module nnero.mcmc)
log_probability() (in module nnero.mcmc)
loglkl() (nnero.mcmc.Likelihood method)
loss_tau() (nnero.regressor.Regressor method)
loss_xHII() (nnero.regressor.Regressor method)
M
m_halo() (in module nnero.astrophysics)
mean (nnero.analysis.GaussianInfo attribute)
(nnero.analysis.ProcessedData attribute)
median (nnero.analysis.ProcessedData attribute)
message (nnero.cosmology.ShortPowerSpectrumRange attribute)
MetaData (class in nnero.data)
metadata (nnero.network.NeuralNetwork attribute)
module
nnero.analysis
nnero.astrophysics
nnero.classifier
nnero.constants
nnero.cosmology
nnero.data
nnero.mcmc
nnero.network
nnero.predictor
nnero.regressor
MPChain (class in nnero.analysis)
MPSamples (class in nnero.analysis)
N
n_baryons() (in module nnero.cosmology)
n_hydrogen() (in module nnero.cosmology)
n_ur() (in module nnero.cosmology)
name (nnero.network.NeuralNetwork attribute)
NeuralNetwork (class in nnero.network)
neutrino_masses() (in module nnero.analysis)
nnero.analysis
module
nnero.astrophysics
module
nnero.classifier
module
nnero.constants
module
nnero.cosmology
module
nnero.data
module
nnero.mcmc
module
nnero.network
module
nnero.predictor
module
nnero.regressor
module
O
omega_nu() (in module nnero.cosmology)
omega_r() (in module nnero.cosmology)
optical_depth_no_rad() (in module nnero.cosmology)
OpticalDepthLikelihood (class in nnero.mcmc)
P
param_names (nnero.analysis.GaussianInfo attribute)
partition (nnero.network.NeuralNetwork attribute)
phi_uv() (in module nnero.astrophysics)
plot_2D_marginal() (in module nnero.analysis)
plot_data() (in module nnero.analysis)
predict_classifier() (in module nnero.predictor)
predict_classifier_numpy() (in module nnero.predictor)
predict_interpolator() (in module nnero.predictor)
predict_interpolator_numpy() (in module nnero.predictor)
predict_parameter() (in module nnero.predictor)
predict_parameter_numpy() (in module nnero.predictor)
predict_regressor() (in module nnero.predictor)
predict_regressor_numpy() (in module nnero.predictor)
predict_tau() (in module nnero.predictor)
predict_tau_from_Xe() (in module nnero.predictor)
predict_tau_from_Xe_numpy() (in module nnero.predictor)
predict_tau_from_xHII() (in module nnero.predictor)
predict_tau_from_xHII_numpy() (in module nnero.predictor)
predict_tau_numpy() (in module nnero.predictor)
predict_Xe() (in module nnero.predictor)
predict_Xe_numpy() (in module nnero.predictor)
predict_xHII() (in module nnero.predictor)
predict_xHII_numpy() (in module nnero.predictor)
prepare_data_plot() (in module nnero.analysis)
prepare_data_Xe() (in module nnero.analysis)
preprocess_raw_data() (in module nnero.data)
print_best_fit() (nnero.analysis.MPSamples method)
print_structure() (nnero.network.NeuralNetwork method)
ProcessedData (class in nnero.analysis)
Q
q (nnero.analysis.ProcessedData attribute)
quantiles (nnero.analysis.ProcessedData attribute)
R
Regressor (class in nnero.regressor)
ReionizationLikelihood (class in nnero.mcmc)
remove_burnin() (nnero.analysis.MPChain method)
rho_baryons() (in module nnero.cosmology)
S
Samples (class in nnero.analysis)
samples (nnero.analysis.ProcessedData attribute)
save() (nnero.data.DataPartition method)
(nnero.data.MetaData method)
(nnero.network.NeuralNetwork method)
save_sampling_parameters() (in module nnero.analysis)
set_check_metadata_and_partition() (nnero.network.NeuralNetwork method)
set_label() (nnero.analysis.AxesGrid method)
ShortPowerSpectrumRange
show() (nnero.analysis.AxesGrid method)
sigma_m() (in module nnero.cosmology)
sigma_r() (in module nnero.cosmology)
size (nnero.analysis.ProcessedData attribute)
T
tau_ion() (nnero.regressor.Regressor method)
test() (nnero.classifier.Classifier method)
test_tau() (nnero.regressor.Regressor method)
test_xHII() (nnero.regressor.Regressor method)
to_21cmFAST_names() (in module nnero.analysis)
to_CLASS_names() (in module nnero.analysis)
TorchDataset (class in nnero.data)
train_accuracy (nnero.network.NeuralNetwork attribute)
train_classifier() (in module nnero.classifier)
train_loss (nnero.network.NeuralNetwork attribute)
train_regressor() (in module nnero.regressor)
true_to_uniform() (in module nnero.data)
U
uniform_input_array() (in module nnero.predictor)
uniform_input_values() (in module nnero.predictor)
uniform_to_true() (in module nnero.data)
update_edges() (nnero.analysis.AxesGrid method)
update_labels() (nnero.analysis.AxesGrid method)
update_titles() (nnero.analysis.AxesGrid method)
UVLFLikelihood (class in nnero.mcmc)
V
valid_accuracy (nnero.network.NeuralNetwork attribute)
valid_loss (nnero.network.NeuralNetwork attribute)
validate() (nnero.classifier.Classifier method)
values() (nnero.analysis.MPChain method)