MCMC
- class nnero.mcmc.OpticalDepthLikelihood(parameters: list[str], *, classifier: Classifier, regressor: Regressor, median_tau: float = 0.0544, sigma_tau: float = 0.0073)[source]
Bases:
Likelihood
- class nnero.mcmc.ReionizationLikelihood(parameters: list[str], *, classifier: Classifier, regressor: Regressor)[source]
Bases:
Likelihood
- class nnero.mcmc.UVLFLikelihood(parameters: list[str], *, parameters_xi: ndarray | None = None, xi: ndarray | None = None, k: ndarray | None = None, pk: ndarray | None = None, precompute: bool = False)[source]
Bases:
Likelihood
Likelihood for the UV luminosity functions.
- Parameters:
k (np.ndarray) – Array of modes on which the matter power spectrum is given (in 1/Mpc).
pk (np.ndarray) – Matter power spectrum.
- nnero.mcmc.initialise_walkers(theta_min: ndarray, theta_max: ndarray, xi: ndarray, likelihoods: list[Likelihood], n_walkers: int = 64, **kwargs)[source]
- nnero.mcmc.log_likelihood(theta: ndarray, xi: ndarray, likelihoods: list[Likelihood], **kwargs) ndarray [source]
Compute the log Likelihood values.
- Parameters:
theta (np.ndarray) – Varying parameters.
xi (np.ndarray) – Extra fixed parameters.
likelihoods (list[Likelihood]) – The likelihoods to evaluate for the fit.
- Returns:
Values of the log Likelihood for each chain.
- Return type:
np.ndarray
- nnero.mcmc.log_prior(theta: ndarray, theta_min: ndarray, theta_max: ndarray, **kwargs) ndarray [source]
Natural logarithm of the prior
assume flat prior except for the parameters for which a covariance matrix and average value are given
Parameters:
- theta: (n, d) ndarray
parameters d is the dimension of the vector parameter n is the number of vector parameter treated at once
- theta_min: (d) ndarray
minimum value of the parameters allowed
- theta_max:
maximum value of the parameters allowed
kwargs:
- mask: optional, (d) ndarray
where the covariance matrix applies the mask should have p Trues and d-p False with p the dimension of the covariance matrix if cov and my given with dim d then mask still optional
- mu: optional, (p) ndarray
average value of the gaussian distribution
- cov: optional, (p, p) ndarray
covariance matrix
- nnero.mcmc.log_probability(theta: ndarray, xi: ndarray, theta_min: ndarray, theta_max: ndarray, likelihoods: list[Likelihood], **kwargs) ndarray [source]